gigl.types.LoadedGraphTensors#
- class gigl.types.data.LoadedGraphTensors(node_ids: Union[torch.Tensor, dict[NewType.<locals>.new_type, torch.Tensor]], node_features: Union[torch.Tensor, dict[NewType.<locals>.new_type, torch.Tensor], NoneType], edge_index: Union[torch.Tensor, dict[gigl.src.common.types.graph_data.EdgeType, torch.Tensor]], edge_features: Union[torch.Tensor, dict[gigl.src.common.types.graph_data.EdgeType, torch.Tensor], NoneType], positive_label: Union[torch.Tensor, dict[gigl.src.common.types.graph_data.EdgeType, torch.Tensor], NoneType], negative_label: Union[torch.Tensor, dict[gigl.src.common.types.graph_data.EdgeType, torch.Tensor], NoneType])#
Bases:
object
Methods
Convert positive and negative labels to edges.
- __eq__(other)#
Return self==value.
- __hash__ = None#
- __init__(node_ids: Tensor | dict[NodeType, Tensor], node_features: Tensor | dict[NodeType, Tensor] | None, edge_index: Tensor | dict[EdgeType, Tensor], edge_features: Tensor | dict[EdgeType, Tensor] | None, positive_label: Tensor | dict[EdgeType, Tensor] | None, negative_label: Tensor | dict[EdgeType, Tensor] | None) None #
- __repr__()#
Return repr(self).
- __weakref__#
list of weak references to the object (if defined)
- treat_labels_as_edges() None #
Convert positive and negative labels to edges. Converts this object in-place to a “heterogeneous” representation.
- This requires the following conditions and will throw if they are not met:
The node_ids, node_features, edge_index, and edge_features are not dictionaries (we loaded a homogeneous graph).
The positive_label and negative_label are not None and are Tensors, not dictionaries.