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Overview
Latent DMs and Cascaded DMs are not end-to-end:
• They consist of multiple models and optimization stages
• This complicates training, inference and downstream applications

Hierarchical Patch Diffusion Model
HPDM is latent transformer-based [3] joint patch diffusion model, and is 
based on three key ideas:
• Hierarchical patch structure: it trains jointly on a hierarchy of 

patches, “nested” into each other;
• Context fusion: input features from lower stages to higher ones;
• Adaptive computation: using fewer blocks in higher stages to reduce 

computational and memory costs.
Surprisingly, a SotA video generator can be trained using just up to 
≈1.5% of the pixels from each video!

Results
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Latent Diffusion Model (LDM) [1]
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https://snap-research.github.io/hpdm/

Method FVD↓ IS↑
MoCoGAN-HD 700 33.95
TATS 635 57.63
VIDM 294.7 -
PVDM 343.6 74.4
Make-A-Video 81.25 82.55
HDPM-S 344.5 73.73
HPDM-M 143.1 84.29
HPDM-L 66.32 87.68

“A panda bear driving a car.”

“A dog <..> flying through the sky.”

“A robot DJ is playing the turntable <..>.”

64x288x512 text-to-video results after 15k 
fine-tuning steps of 16x36x64 SnapVideo [4]
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We design a Hierarchical Patch Diffusion Model (HPDM):
• End-to-end high-resolution video diffusion model;
• Obtains SotA results on UCF and comparable results on text2video;
• Can be quickly fine-tuned from a low-res video generator.

SotA results on UCF 2562

Ablations

Limitations
• Stitching artifacts due to tiled inference (though overlapping helps)
• Slow inference: NFEs grow exponentially with the number of stages
• Error propagation: errors in lower stages propagate to higher ones
• “Dead” pixels: transformer-based DMs are prone to spatial 

inconsistency

Method FVD512↓ FVD512↓ FVD512↓
Training 
speed ↑

Shallow context fusion 298.9 411.9 467.0 4.91
Detaching context from the graph 290.6 375.0 397.3 4.4
Non-adaptive computation 319.3 391.5 373.9 2.73
No coordinates conditioning 305.3 400.7 389.5 4.47
HPDM (full model) 287.6 376.6 378.2 4.4
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