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Abstract

Diffusion models have demonstrated remarkable perfor-
mance in image and video synthesis. However, scaling them
to high-resolution inputs is challenging and requires re-
structuring the diffusion pipeline into multiple independent
components, limiting scalability and complicating down-
stream applications. In this work, we study patch diffusion
models (PDMs) — a diffusion paradigm which models the
distribution of patches, rather than whole inputs, keeping
up to ~0.7% of the original pixels. This makes it very ef-
ficient during training and unlocks end-to-end optimization
on high-resolution videos.

We improve PDMs in two principled ways. First, to en-
force consistency between patches, we develop deep con-
text fusion — an architectural technique that propagates the
context information from low-scale to high-scale patches
in a hierarchical manner. Second, to accelerate training
and inference, we propose adaptive computation, which al-
locates more network capacity and computation towards
coarse image details. The resulting model sets a new state-
of-the-art FVD score of 66.32 and Inception Score of 87.68
in class-conditional video generation on UCF-101 2562,
surpassing recent methods by more than 100%. Then, we
show that it can be rapidly fine-tuned from a base 36 x 64
low-resolution generator for high-resolution 64 x 288 x 512
text-to-video synthesis. To the best of our knowledge,
our model is the first diffusion-based architecture which
is trained on such high resolutions entirely end-to-end.
Project webpage: https://snap-research.github.io/hpdm.

1. Introduction

Recently, diffusion models (DMs) have achieved remark-
able performance in image and video synthesis, greatly
surpassing previous dominant generative paradigms, such
as GANs [16], VAEs [33] and autoregressive models [5].
However, scaling them to high-resolution inputs broke their
end-to-end nature, since training the full-scale monolithic
foundational generator led to infeasible computational de-
mands [23, 44]. Splitting the architecture into several stages
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Figure 1. Comparing existing diffusion paradigms: Latent Dif-
fusion Model (LDM) [44, 60] (upper left), Cascaded Diffusion
Model (CDM) [23] (bottom left), and Patch Diffusion Model (this
work) during training (upper right) and inference (bottom right).
In our work, we develop hierarchical patch diffusion, which never
operates on full-resolution inputs, but instead optimizes the lower
stages of the hierarchy to produce spatially aligned context infor-
mation for the later pyramid levels to enforce global consistency
between patches.

satisfied the immediate practical needs, but having multiple
components in the pipeline makes it harder to tune and com-
plicates downstream tasks like editing or distillation.

For example, LDM [44] trains a diffusion model in the
latent space of an autoencoder, which requires an additional
extensive hyperparameters search. The original work has
dedicated more than a dozen experiments to it (see Tab. 8
of [44]), and the search for its optimal design is still on-
going [3, 8, 41]. Moreover, retraining an auto-encoder re-
quires retraining the latent generator, resulting in extra com-
putational costs. Also, having multiple components com-
plicates downstream applications: for example, SnapFu-
sion [35] had to come with two unrelated sets of techniques
to distill the generator and the auto-encoder separately.
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Table 1. Efficiency comparison between patch-wise and full-
resolution diffusion in the RIN [27] framework (which scales more
gracefully with the input size than UNets [9, 45]). Memory con-
sumption is measured in GB for the batch size of 1; speed as
videos/sec for a maxed-out batch size on NVidia A100 80GB.

Method 64 x 2562 64 x 5122
Mem| Speed? Mem] Speed T
Full-resolution DM 65.3 1.24 OOM OOM
HPDM (32 x 1282 patch size) 29.0 2.64 41.3 1.55
+ adaptive computation 234 3.58 29.9 2.49
HPDM (16 x 642 patch size) 18.1 4.25 22.1 2.78
+ adaptive computation 14.2 6.71 16.3 4.96

Cascaded DM (CDM) [23] sequentially trains several
diffusion models of increasing resolution, where each next
DM is conditioned on the outputs of the previous one. This
framework enjoys a more independent nature of its compo-
nents, where each generator is trained independently from
the rest, but it has more modules in the pipeline (e.g., Im-
agenVideo [22] consists of 7 video generators) and more
expensive inference. An end-to-end design is a highly desir-
able property of a diffusion generator, from the perspectives
of both practical importance and conceptual elegance.

The main obstacle to moving a standard high-resolution
DM onto end-to-end rails is an increased computational
burden. In the past, patch-wise training proved success-
ful for GAN training for high-resolution image [52], video
(e.g., [53, 70]) and 3D (e.g., [48, 54]) synthesis, but, how-
ever, has not picked up much momentum in the diffu-
sion space. To our knowledge, PatchDiffusion [64] and
MaskDIT [73] are the only works that explore it, but none
of them considers the required level of input sparsity to
scale to high-resolution videos: PatchDiffusion still relies
on full-resolution training for 50% of its optimization (so it
is not purely patch-wise), while MaskDIT preserves ~50%
of the original input. In our work, we explore patch diffu-
sion models while keeping just up fo 0.7% of the original
pixels. The comparison of patch-wise training and conven-
tional paradigms is depicted in Fig. 1, and in Table 1, we
show that it can achieve x5 larger throughput and is train-
able on high-resolution videos. We focus on video synthesis
since, for videos, the computational burden of high reso-
lutions is considerably more pronounced than for images:
there now exist end-to-end image diffusion models that are
able to train even on 10242 resolution (e.g., [7, 19, 26, 32]).

For our patch-wise training, we consider a hierarchy of
patches instead of treating them independently [64], which
means that the synthesis of high-resolution patches is con-
ditioned on the previuosly generated low-resolution ones.
It is a similar idea to cascaded DMs [23] and helps to im-
prove the consistency between patches and simplifies noise
scheduling for high resolutions [6, 26, 57]. To improve both
the qualitative performance and computational efficiency

of patch diffusion, we develop two principled techniques:
deep context fusion and adaptive computation.

Deep context fusion considers conditions the generation
of higher-resolution patches on subsampled, positionally
aligned features from the lower levels of the pyramid. It
serves as an elegant way to incorporate global context in-
formation into synthesis of higher-frequency textural de-
tails and to facilitate knowledge sharing between the stages.
Adaptive computation restructures the model architecture
in such a way that only a subset of layers operate on high-
resolution patches, while more difficult low-resolution ones
go through the whole pipeline.

We apply the designed techniques to the recent attention-
based RIN generator [27], and benchmark our approach
on two video generation datasets: UCF-101 [56] in the
64 x 2562 resolution, and our internal dataset of text/video
pairs for 64 x 288 x 512 (and 16 x 576 x 1024) text-to-
video generation. Our model achieves state-of-the-art per-
formance on UCF-101 and demonstrates strong scalability
performance for large-scale text-to-video synthesis.

2. Related work

High-level diffusion paradigms. To the best of our knowl-
edge, one can identify two main conceptual paradigms on
how to structure a high-resolution diffusion-based genera-
tor: latent diffusion models (LDM) [44] and cascaded dif-
fusion models (CDM) [23]. For CDMs, it was shown that
the cascade can be trained jointly [18], but scaling for high
resolutions or videos still requires progressive training from
low-resolution models to obtain competitive results [19].
Video diffusion models. The rise of diffusion models as
foundational image generators [9, 43] motivated the com-
munity to explore them for video synthesis as well [24].
VDM [24] is one of the first works to demonstrate their
scalability for conditional and unconditional video gener-
ation using the cascaded diffusion approach [23]. Ima-
genVideo [22] further pushes their results, achieving pho-
torealistic quality. VIDM [38] designs a separate module
to implicitly model motion. PVDM [71] trains a diffu-
sion model in a spatially decomposed latent space. Make-
A-Video [51] uses a vast unsupervised video collection in
training a text-to-video generator by fine-tuning a text-to-
image generator. PYoCo [14] and VideoFusion [37] design
specialized noise structures for video generation. Numer-
ous works explore training of a foundational video genera-
tor on limited resources by fine-tuning a publicly available
StableDiffusion [41, 44] model for video synthesis (e.g.,
[1, 4, 20, 37, 63]). Another important line of research
is the adaptation of the foundational image or video gen-
erators for downstream tasks, such as video editing (e.g.
[11, 15, 30, 65, 66]) or 4D generation [50]. None of these
models is end-to-end and all follow cascaded [23] or la-
tent [44] diffusion paradigms.



Patch Diffusion Models. Patch-wise generation has a long
history in GANSs [16] and has enjoyed applications in im-
age [36], video [53] and 3D synthesis [48]. In the context
of diffusion models, there are several works that explore
patch-wise inference to extend foundational text-to-image
generators to higher resolutions than what they had been
trained on (e.g., [2, 31, 74]). Also, a regular video diffu-
sion model can be inferred in an autoregressive manner at
the test time because it can be easily conditioned on its pre-
vious generations via classifier guidance or noise initializa-
tion [24], and this kind of synthesis can also be seen as a
patch-wise generation. Later stages of CDMs can also op-
erate in a patch-wise fashion [43], even though they have
not been explicitly trained for this. These works have rele-
vance to ours, since they design patch-wise sampling strate-
gies with better global consistency in the resulting samples
and thus could be employed for our generator as well.

The primary focus of our work is patch-wise training of
diffusion models, which has been explored in several prior
works. Several works (e.g., [34, 40, 62]) train a diffusion
model on a single image to produce its variations [17, 49].
The closest work to ours is PatchDiffusion [64], which ex-
plores direct patch-wise diffusion training. However, to
learn the consistent global image structure, their developed
model operates on full-size inputs in 50% of the optimiza-
tion steps, which is computationally infeasible for high-
resolution videos. Our generator design, in contrast, never
operates on full-resolution videos and instead relies on con-
text fusion to enforce the consistency between the patches.

Apart from expensive training, diffusion models also suf-
fer from slow inference [9], and some works explored alter-
native denoising paradigms (e.g., [68, 69]) to mitigate this,
which is a close but orthogonal line of research.

3. Background
3.1. Diffusion Models

Given a dataset X = {x(™}_,, consisting of N samples
(™ € R? (most commonly images or videos), we seek to
recover the underlying data-generating distribution (™ ~
p(x). We follow the general design of time-continuous dif-
fusion models [29], for which a neural network Dg(&; o) is
trained to predict ground-truth dataset samples a from their
noised versions £ = x + €, ~ N(0,01):

E [|De(%;0) — z||3] — min (1)

x,e,0 ]

In the above formula, p(o) controls the corruption intensity
and its distribution parameters are treated as hyperparam-
eters [0, 29]. The denoising network can serve as a score
estimator [29]:

. 1
s6(x,0) = Valogp(x) ~ — (De(@;0) —x).  (2)
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Figure 2. Architecture overview of Hierarchical Patch Diffusion
Model (HPDM) for a 3-level pyramid. The model is trained to de-
noise all the patches jointly. During training, we use only a single
patch from each pyramid level and restrict information propaga-
tion in the coarse-to-fine manner. This allows one to synthesize
the whole image (or video) at a given resolution patch-by-patch
using tiled inference (see Figure 1).

For large enough o, the corrupted sample & is indistinguish-
able from pure Gaussian noise, and this allows to employ
the score predictor for sampling at test-time using Langevin
dynamics [55] (witho — Q0 and T' — o0):

~ ~ g ~
mtzmt—1+§se($70)+€t- 3)

3.2. Recurrent Interface Networks

For our base architecture, we chose to follow Recurrent In-
terface Networks (RINs) [27] for their simplicity and ex-
pressivity. A typical RIN network has a uniform structure
and consists of a ViT-like [10] linear image tokenizer, fol-
lowed by a sequence of identical attention-only blocks and
a linear detokenizer to transform the image tokens back to
the RGB pixel values. RIN blocks do not employ an ex-
pensive self-attention mechanism [61] and instead rely on
linear cross-attention layers with a set of learnable latent to-
kens. This allows to scale gracefully with input resolution
without sacrificing communication between far-away input
locations. We refer the reader to the original work [27] for



additional details and provide the illustration for our RIN
block in Figure 11 in Appendix C.

4. Method

Our high-level patch diffusion design is different from
PatchDiffusion [64] in that our model never operates on
full-resolution inputs. Instead, we consider a hierarchi-
cal cascade-like structure consisting of L stages and patch
scales s; decrease exponentially: s, = 1/2° for £ €
{0,1, ..., L}. Patches are always of the same resolution r» =
(rf,Th, Tw), which leads to substantial memory and compu-
tational savings compared to full-resolution training. Dur-
ing training, we randomly sample a video from the dataset
and extract a hierarchy of patch coordinates cy, ..., cy, in
such a way that the /-th patch is always located inside the
previous ¢/ < ¢ patches so that they provide the necessary
context information. Hierarchical patch diffusion is trained
to jointly denoise a combination of these patches, denoted
as P = (pl)¢ = 0", and their corresponding noise levels
o = (00)i g

E [IDo(Poio) = P3| »min, @)

p.g,0

where each patch is corrupted independently: P = (py +
eo)k_y,€0 ~ N(0,04,1) Restricting the information flow
in the coarse-to-fine manner (see Fig. 2) allows to do infer-
ence at test-time in the cascaded diffusion fashion [23].

Below, we elaborate on three fundamental components
of our method that allow a patch-wise paradigm to achieve
state-of-the-art results in video generation: deep context fu-
sion, adaptive computation and overlapped sampling.

4.1. Patch Diffusion

The training objective of patch diffusion is similar to the
regular diffusion design, but instead of full-size videos (or
images) x € REs*FnxRu it uses randomly subsampled
patches p € R"/ X" X"w and trains the patch-wise model
Dg(p; o) to denoise them:

JE_[IDe(p:0) = pls] — min. (5)
Following [54], the patch extraction procedure extracts pix-
els using random scales s = (s7, Sp, Sw), S« € [/ Ra, 1],
and offsets & = (dy, 0p, 0y), 05 € [0,1 — s]:

p = downsample(crop(x;d);r), (6)

where the crop function slices the input signal given the
pixel offsets §, and downsample resizes it to the specified
resolution 1y X 7, X 7y.

Since we consider a hierarchical structure, during train-

ing, we use fixed scales for each ¢-th level sgf) = rﬁ /R, but

randomly sample offsets s ~ U [0,1— sg)]. For a level
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Figure 3. Deep Context Fusion. At each pyramid level, we grid-
sample the features of a lower-resolution patch and concatenate
them to the activations tensor of the current level. In this way,
the information propagates in the coarse-to-fine manner and pro-
vides richer context than pixel-space concatenation of cascaded
DMs (see Tab. 3).

¢ > 1, we sample its corresponding offset (i(f) in each *-th
dimension in such a way, that the resulting patch is always
located inside the patch from the previous pyramid level, as
visualized in Fig. 2. For brevity, we will omit the level su-
perscript in the subsequent exposition for patch parameters.

Setting patch resolutions r¢, 74,7, lower than original
ones Iy, IRy, Ry, leads to drastic improvements in compu-
tational efficiency, but worsens the global consistency of
the generated samples. In [64], the authors use variable-
resolution training, including 50% of optimization steps
performed on full-size inputs to improve the consistency.
The downside of such a strategy is that it undermines com-
putational efficiency: for a large enough video, the model
cannot fit into GPU memory even for a batch size of 1. In-
stead, in our work, we demonstrate that consistent genera-
tion can be achieved with deep context fusion: conditioning
higher resolution generation on the activations from previ-
ously generated stages.

4.2. Deep Context Fusion

The main struggle of patch-wise models is preserving the
consistency between the patches, since each patch is mod-
eled independently from the rest, conditioned on the previ-
ous pyramid stage. Cascaded DMs [23] provide the condi-
tioning to later stages by simply concatenating an upsam-
pled low-resolution video channel-wise [23] to the current
latent. While it can provide the global context informa-
tion when the model operates on a full-resolution input,
for patch-wise models, this leads to drastic context cut-
outs, which, as we demonstrate in our experiments, severely
worsens the performance. Also, it limits the knowledge
sharing between lower and higher stages of the cascade. To
address this issue, we introduce deep context fusion (DCF),
a context fusion strategy that conditions the higher stages of
the pyramid on spatially aligned, globally pooled features
from the previous stages.

For this, before each RIN block of our model, we pool



the global context information from previous stages into its
inputs. For this, we use the patch coordinates to grid-sample
the activations with trilinear interpolation from all previ-
ous pyramid stages, average them, and concatenate to the
current-stage features.

More precisely, for a given patch b-th block in-
puts ab! € RPIXTRXTL with coordinates ¢, =
(5,0, 0h,0,) € R* at the ¢-th pyramid level; £ — 1 context

> it b—1y0—1 . : -
patches’ activations (a, ), _; with respective coordinates

’ ’
XTp XT

. ’
(cx)4—h, we compute the context ctx, € R*¥"s w as:

1

/—
1 , 1 4

ctx) = -1 Z grid_samplesplab™1,é], (7)

k=1

where grid_samplesp is a function that extracts the fea-
tures with trilinear interpolation via the coordinates queries,
¢, are the recomputed patch coordinates (for k < ¢) calcu-
lated as:

Co(eo, c) = [s¢/sk; (00 — k) /1] ®)

We fuse this context information via simple channel-wise
concatenation together with the coordinates information ¢y
which we found to be slightly improving the consistency:

b—1

fuselal™, ¢ (al el

,Ck)p—1] = concat|ag, ctxy, c(].

©))

Deep context fusion is illustrated in Fig. 3.

To keep the dimensionalities the same across the net-
work, we then project the resulted tensor fuse[] €
R(2d+3) X7 X757 with a learnable linear transformation.
We considered other aggregation strategies, like concatenat-
ing all the levels’s features or averaging, but the former one
blows up the dimensionalities, making the training expen-
sive, while the latter one was leading to poor performance
in our preliminary experiments.

An additional advantage of DCF compared to shallow
context fusion of regular cascaded DMs is that the gradient
can flow from the small-scale patch denoising loss to the
lower levels of the hierarchy, pushing the earlier cascade
stages to learn such features that are more useful to the later
ones. We found that this is indeed helpful in practice and
improves the overall performance additionally by ~5%.

4.3. Adaptive Computation

Naturally, generating high-resolution details is considered
to be easier than synthesizing the low-resolution struc-
ture [12]. In this way, allocating the same amount of net-
work capacity on high-resolution patches can be excessive,
that is why we propose to use only some of the computa-
tional blocks when running the last stages of the pyramid.

We name this strategy adaptive computation' and demon-

strate that it improves our model’s efficiency by ~60%
without compromising the performance (see Tab. 3). The
uniform RIN’s structure [27] (i.e., all the blocks are iden-
tical and have the same input/output resolutions) allows us
to implement this easily: one simply skips some of the ear-
lier blocks when processing the high-resolution activations.
The high-level pseudo-code is provided in Listing 1.
def adaptive_computation (
blocks: List [RINBlock],
x: Tensor,
num_levels_per_block: List[int]
) —> Tensor:
# ‘x" has the shape: [B, L, D, F, H, W]
for blk_idx, blk in enumerate (blocks) :
nlvl: int = num_levels_per_block[blk_idx]
x[:, :nlvl] = blk(x[:, :nlvl])

Listing 1. Pseudo-code for adaptive computation (Sec. 4.3)

Adaptive computation involves two design choices: 1)
whether to skip earlier or later blocks in the networks for
higher resolutions, and 2) how to distribute the computation
assignments among the blocks per each pyramid stage. We
chose to allocate the later blocks to perform full computa-
tion to make the low-level context information go through
more processing before being propagated to the higher
stages. For the block allocations, we observed that sim-
ply increasing the computation assignments linearly with
the block index worked well in practice.

4.4. Tiled Inference

Sampling from HPDM is different from regular diffusion
sampling, since it is patch-wise and we never operate on
full-resolution inputs. During inference, we generate pyra-
mid levels one-by-one, starting from r; X rj, xr,, video (cor-
responding to a patch of scale s = 1), then using to generate
the video of resolution 2r; x 2r;, x 2r,, (corresponding to
patch scale s = 1/2), and so on until we produce the final
video of full resolution Ry x Rj x R,,. We visualize this
hierarchical tiled inference process in Fig. 1 (bottom right).

Each next stage of the pyramid uses the generated video
from the previous stage through the deep context fusion
technique described in Sec. 4.2. DCF provides strong global
context conditioning, but it is sometimes not enough to en-
force local consistency between two neighboring patches.
To mitigate this, we employ the MultiDiffusion [2] strategy
and simply average-overlap the score predictions sg(p, o)
during the denoising process. More concretely, to gener-
ate a complete video x € R >*fnxFw we first generate
(2R5—1)x (2Rp —1) x (2R, —1) patches with 50% of the
coordinates overlapping between two neighboring patches.
Then, we run the reverse diffusion process for each patch

'Our notion of adaptive computation is different from the original
RIN’s one, where it is used to describe the model’s ability to distribute its
computational capacity differently between different parts of an input [27].
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Figure 4. Provided samples from PVDM [71] (left) and random samples from HPDM-L (right) for the same classes on UCF 2562. More

samples are provided in Appendix B.

and average the overlapping regions of the corresponding
score predictions. The importance of overlapped inference
is illustrated in Fig. 6 and Tab. 4.

4.5. Miscellaneous techniques

The core ideas that enable our work have been described
above, but from the implementation and engineering stand-
points, there are several other techniques that played an im-
portant role in bolstering the performance and would be of
interest to a practitioner aiming to reproduce our results.
Additional details and failed experiments can be found in
Appendix A and D, respectively.

Integer patch coordinates. We noticed that sampling a
patch on the L-th cascade level at integer coordinates allows
to prevent blurry artifacts in generated videos: they appear
due to oversmoothness effects of trilinear interpolation.
Noise Schedule Each stage of the pyramid operates on dif-
ferent frequency signals, and higher levels of the pyramid
have stronger correlations between patch pixels. Inspired
by [6], we found it helpful to use exponentially smaller in-
put noise scaling with each increase in pyramid level.
Cached inference During inference, we do not need to re-
compute all the activations for the previous pyramid stages,
which makes it possible to cache them, which works even
more gracefully. Caching block features allowed to speed
up the inference by ~40%. However, for the large model,
caching needs to be implemented with CPU offloading to
prevent GPU out-of-memory errors.

4.6. Implementation details

We use RINs [27] instead of U-Nets [9, 45] as the back-
bone since its uniform structure is conceptually simpler and
aligns well with adaptive computation. We use v-prediction
parametrization [47] with extra input scaling [6]. Following
RINs, we train our model with the LAMB optimizer [67],
with the cosine learning rate schedule and the maximum LR
of 0.005. Our model has 6 RIN blocks, and we distribute the
load for adaptive computation as [1, 1, 2, 2, 3, 4]: e.g., the 1-
st and 2-nd blocks only compute the first pyramid level, the
3-rd and 4-rd ones — first two levels of the pyramid, and so
on. Not using adaptive computation is equivalent to having

aload of [4, 4, 4, 4, 4, 4], which is almost twice as expen-
sive. We use 768 latent tokens of 1024/3072 dimensionality
with 1 x 4 x 4 pixel tokenization for class-conditional/text-
conditional experiments, respectively. To encode the tex-
tual information, we rely on T5 language model [42] and
use its T5-11B variant. Further implementation details can
be found in Appx C.

5. Experiments

Datasets. In our work, we consider two datasets: 1)
UCF101 [56] (for exploration and ablations) and 2) our
internal video dataset to train a large-scale text-to-video
model. UCF101 is a popular academic benchmark for un-
conditional and class-conditional video generation consist-
ing of videos of the 240 x 320 resolution with 25 FPS and
has an average video length of ~7 seconds. Our internal
dataset consists of ~25M high-quality text/video pairs in
the style of stock footage with manual human annotations
and ~70M of low-quality in-the-wild videos with automat-
ically generated captions. Additionally, for text-to-video
experiments, we used an internal dataset of ~150M high-
quality text/image pairs for extra supervision [51].
Evaluation. Following prior work [22, 24, 25, 53], we eval-
uate the model with two main video quality metrics: Frechet
Video Distance (FVD) [59], and Inception Score (IS) [46].
For FVD and IS, we report their values based on 10,000
generated videos. But for ablations, we use FVD @512 in-
stead for efficiency purposes: an FVD variant computed on
just 512 generated videos. We noticed that it correlates well
with the traditional FVD, but with just a fixed offset. Apart
from that, we report the training throughput for various de-
signs of our network and also provide the samples from our
model for qualitative assessment.

5.1. Video generation on UCF-101

We train HPDM in three variants: HPDM-S HPDM-M, and
HPDM-L, which differ in the amount of parameters, batch
size and training iterations used. The hyperparameters for
them are provided in Tab. 8. For ablations, we train all the
models for 50K steps with the batch size of 512. UCF mod-
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Figure 5. HPDM-T2Vis able to efficiently fine-tune from the standard low-resolution generator to high-resolution 64 x 288 x 512 text-to-
video generation when fine-tuned from a low-resolution 36 x 64 diffusion for just 15,000 training steps.

els are trained for the final video resolution of 64 x 2562
with the pyramid 16 x 642 — 32 x 1282 — 64 x 2562,

Main results. Our patch-wise model is trained on UCF-
101 [56] for 64 x 2562 generation entirely end-to-end
with the hierarchical patch sampling procedure described
in Sec. 4. In Tab. 5, we compare these results with recent
state-of-the-art methods: MoCoGAN-HD [58], StyleGAN-
V [53], TATS [13], VIDM [38], DIGAN [70], PVDM [71].
While our model is trained to synthesize 64 frames, we re-
port quantitative results for 16 generated frames, since it is a
much more popular benchmark in the literature (for this, we
simply subsample 16 frames out of the generated 64). Our
model substantially outperforms all previously reported re-
sults for this benchmark (i.e., for the 16 x 2562 resolution
and without pretraining) by a striking margin of more than
100%. To our knowledge, these are the best reported FVD
and IS scores for the 16 x 256 resolution on UCF. Make-
A-Video [51] reports FVD of 81.25 and IS of 82.55 when
fine-tuned from a large-scale text-to-video generator.

Ablations. We consider two lines of ablations: ablating
core architectural decisions and benchmakring various in-
ference strategies, since the latter also crucially influences
the final performance. For the training components, we first
analyze the influence of deep context fusion. For this, we
launch an experiment with “shallow context fusion”, where
we concatenate only the RGB pixels (non-averaged, only
from the patch of the previous pyramid level) as the con-
text information. As one can see from the results in Tab. 3
(first row), this strategy produces considerably worse results
(though the training becomes ~10% faster).

The next ablation is whether the low-level pyramid
stages indeed learn such features that are more useful for
later pyramid stages, when they are directly supervised with
the denoising loss of small-scale patches through the con-
text aggregation procedure. For this ablation, we detach the
context variable ctx from the autograd graph. The results
are presented in Tab. 3 (second row). One can observe that
the performance can be better for earlier pyramid stages,
but the late stage suffers: this demonstrates that the lowest
stage indeed learns to encode the global context in a way
that is more accessible for later levels of the cascade, but by

Table 2. Comparison with the recent state-of-the-art methods on
UCF-101 [56] 16 x 256 class-conditional video generation (note
that our model is trained 64 x 2562 videos). *Note that Make-A-
Video [51] was pretrained on a large-scale text-to-video dataset.

Method FvD ] ISt Venue
DIGAN [70] 1630.2 29.71 ICLR’22
MoCoGAN-HD [58] 700 3395 ICLR’21
StyleGAN-V [53] 1431.0 23.94 CVPR’22
TATS [51] 635 57.63 ECCV’22
VIDM [38] 294.7 - AAAT23
PVDM [71] 343.6 744 CVPR’23
Make-A-Video* [51] 81.25 82.55 ICLR’23
HPDM-S 3445 73.73

HPDM-M 143.1 84.29 CVPR’24
HPDM-L 66.32  87.68

sacrificing a part of its capacity due to this.

One of the key techniques we used in our model is adap-
tive computation, and in Tab. 3 (third row), we demonstrate
how the model performs without it. While it allows to ob-
tain slightly better results, it decreases the training speed
by almost twice. The cost of the later pyramid stages be-
comes even more critical during inference time, when sam-
pling high-resolution videos.

Finally, we verify the existing observation of the commu-
nity that positional encoding in patch-wise models help in
producing more spatially consistent samples [36, 52]. This
can be seen from the worse FVD @512 scores in Tab. 3 (4th
row) when no coordinates information is input to the model
in context fusion (Eq. (9)).

5.2. Text-to-video generation

Training setup. To explore the scalability of the patch-wise
paradigm, we launched a large-scale experiment for HPDM
with ~4B parameters on a text/video dataset consisting of
~95M samples. Since training a foundational model incurs
extreme financial costs, we instead found it financially less
risky to fine-tune it from a low-resolution generator. For
this, we used the base SnapVideo [39] model, which oper-



Table 3. Ablating architectural components in terms of FVD
scores and training speed measured as the videos/sec throughpout
on a single NVidia A100 80GB GPU.

FVD@512 FVD@512 FVD@512 Training
Setup

16 x 642 32 x 1282 64 x 2562  speed 1
Shallow fusion 298.9 411.9 467.0 491
Context detach 290.6 375.0 397.3 4.4
No adapt. computation 319.3 391.5 373.9 2.73
No coordinates 305.3 400.7 389.5 4.47
Default model 287.6 376.6 378.2 44

Table 4. FVD @512 for various overlapped inference strategies.

Inference strategy 32 x 1282 64 x 2562
No overlapping 385.40 475.05
50% w-overlapping 367.10 452.79
50% h-overlapping 383.15 467.36
50% h/w-overlapping 382.25 456.10
50% f-overlapping 380.63 460.74
50% f /w-overlapping 398.77 492.84
50% f/h-overlapping 360.46 436.81
50% f/h/w-overlapping 381.85 467.37

full overlapping

spatial overlapping

no overlapping

Figure 6. Effect of the overlapped inference [2] on the consistency
between the patches. Surprisingly, even without the full-resolution
training [64] and patch overlapping, our deep context fusion strat-
egy manages to preserve strong consistency in the generated sam-
ple. See Tab. 4 for quantitative analysis.

ates on 36 x 64 resolution videos. Our patch-wise vari-
ant, HPDM-T2V, was trained for the final output resolu-
tion of 64 x 288 x 512 with the pyramid 8 x 36 x 64 —
16 x 72 x 128 — 32 x 144 x 256 — 64 x 288 x 512
(4 pyramid levels in total). This 4-level pyramid structure
results in just 4 - (1/8)3 ~ 0.7% of the original video pixels
seen in each optimization step. The base 36 x 64 gener-
ator was trained for 500,000 iterations, and we fine-tuned
HPDM-T2V for 15,000 more steps (3% of the base genera-
tor training steps) with a batch size of 4096. We also fine-
tune another model, HPDM-T2V-1K, a 16 x576 x 1024 text-
to-video generator with a patch resolution of 16 x 72 x 128.
It is initialized from the base 36 x 64 SnapVideo diffu-
sion model, but fine-tuned for 100,000 iterations. Longer
fine-tuning was required for it since its input resolution was
chosen to be larger than that of the base generator to make it

Table 5. Zero-shot performance on UCF-101. HPDM-T2V
achieves competitive performance when fine-tuned from the base
low-resolution 36 x 64 generator for just 15,000 training steps.

Method

CogVideo [25]
Make-A-Video
MagicVideo [75]

Resolution FVD| ISt

128 x 128  701.6  25.27
256 x 256 367.2 33.00
256 x 256 655 -

LVDM [21] 256 x 256  641.8 -

Video LDM [4] N/A 550.6 33.45
VideoFactory [63] 256 x 256  410.0 -

PYoCo [14] 256 x 256 3552 47.46
HPDM-T2V 72 x 128 299.3  20.53
HPDM-T2V 144 x 256  383.3 21.15
HPDM-T2V 288 x 512 4819 23.77
HPDM-T2V-1K 576 x 1024  447.5 24.51

have 4 levels in the pyramid instead of 5. Apart from videos,
following prior works (e.g., [24, 51]), we utilize joint im-
age/video training. For image training with RINs, following
SnapVideo [39], we simply repeat the image along the time
axis to convert it into a still video.

Results. We test the results quantitatively by reporting zero-
shot performance on UCF-101 [56] in terms of FVD and IS
in Tab. 5, and also qualitatively by providing visual compar-
isons with existing foundational generators in Fig. 5. Al-
though trained for just 15,000 steps, HPDM-T2V yields
promising results and has a comparable generation qual-
ity to modern foundational text-to-video models (ImageV-
ideo [22], Make-A-Video [51], and PYoCo [14]) on some
text prompts (see Fig. 5).

We provide more qualitative results on the project web-
page: https://snap-research.github.io/hpdm.

6. Conclusion

In this work, we developed the hierarchical patch diffusion
model for high-resolution video synthesis, which effi-
ciently trains in the end-to-end manner directly in the pixel
space, and is amenable to swift fine-tuning from a base
low-resolution diffusion model. We showed state-of-the-art
video generation performance on UCF-101, outperforming
the recent methods by =100% in terms of FVD, and
promising scalability results for text-to-video generation.
The techniques we developed hold significant potential
for application across various patch-wise generative
paradigms, including GANs, VAEs, autoregressive models,
and beyond. In future work, we intend to investigate better
context conditioning, sampling strategies with stronger
dependence enforcement, and also other tokenization/deto-
kenization transformations to mitigate dead pixels artifacts.


https://snap-research.github.io/hpdm
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Supplementary Material

A. Limitations

Although our model provides considerable improvements
in video generation quality and enjoys a convenient end-to-
end design, it still suffers from some limitations.

Stitching artifacts. Despite using overlapped inference,
our model occasionally exhibits stitching artifacts. We il-
lustrate these issues in Fig. 7 (left). Inference strategies with
stronger spatial communication, like classifier guidance [9],
should be employed to mitigate them.

Error propagation. Since our model generally follows the
cascaded pipeline [19, 23, 28, 43] (with the difference that
we train jointly and more efficiently), it suffers from the
typical cascade drawback: the errors made in earlier stages
of the pyramid are propagated to the next. The error propa-
gation artifacts are illustrated in Fig. 7 (left).

Dead pixels. By “dead pixels” artifacts we imply failures
of the ViT [10]-like pixel tokenization/detokenization pro-
cedure, where the model sometimes produces broken 4 x 4
patches. They are illustrated in Fig. 7. These artifacts are
unique to RINs [27] and we have not experienced them in
our preliminary experiments with UNets [9, 29]. However,
since they do not appear catastrophically often, we chose to
continue to experiment with RINs.

Slow inference. Patch-wise inference requires more func-
tion evaluations at test time, which slows down the in-
ference process. For our exponentially growing pyramid
starting at 8 X 36 x 64 and ending at 64 x 288 x 512,
with full (i.e., maximal) overlapping, we need to produce
(2-8 —1) x (2- 28 — 1) x (2212 — 1) = 3375 patches
for a single reverse diffusion step (see Sec. 4.4 for calcu-
lation details). Adaptive computation with caching greatly
accelerates this process, but it is still heavy.

stitching artifacts & error ropagatlon “dead pixels”

Figure 7. Illustrating the failure cases of HPDM..

B. Additional results

There are multiple incosistencies in quantitative evaluation
of video generators that are inconsistent between previous
projects [53, 71]. For FVD [59] on UCF101 (the most pop-
ular metric for it), there are differences in the amounts of
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Figure 8. Using different amounts of fake videos to compute
FVD [59] gives very correlated, but offset values with the main
trend being “the more —- the better”. We hypothesize that using
more synthetic samples yields better coverage of different modes
of the data distribution and decreases the influence of outliers.
These FVD scores are computed for different training steps of
HPDM-S. Using too few videos leads to undiscriminative results
only closer to convergence.

fake/real videos used to compute the statistics, FPS values,
resolutions, and real data subsets (“train” or “train + test”).
To account for these differences, in Tab. 6, we release a
comprehensive set of metrics for easier assessment of our
models’ performance in comparison with the prior work.
Apart from that, it also includes additional models, HPDM-
S and HPDM-M, and also the results for the fixed version of
our text-to-video HPDM model (after the main deadline, we
noticed that our FSDP-based [72] training was not updating
some of the EMA parameters properly, which was the cause
of gaussian jitter artifacts in Fig. 7).

To compute real data FVD statistics, we always use the
train set of UCF-101 (around 9.5k videos in total). We train
the models with the default 25FPS resolution. Our models
are trained for 64 frames, and to compute the results for
16 frames, we simply take the first 16 frames out of the
sequence.

Additional results are also provided on the project web-
page: https://snap-research.github.io/hpdm.

C. Implementation details

In this section, we provide additional implementation de-
tails for our model. We train our model in a patch-wise
fashion with the patch resolution of 16 x 64 x 64 for UCF-
101 [56] and 8 x 36 x 64 for text-to-video generation. Af-
ter the main deadline, we continued training our model on
UCF for several more training steps, and also trained two
smaller versions for fewer steps. We denote the smaller ver-
sions as HPDM-S and HPDM-M, while the larger one is
denoted as HPDM-L. They differ in the amount of train-


https://snap-research.github.io/hpdm

Table 6. Additional FVD evaluation results for class-conditional UCF-101 video generation. “Pre-trained” denotes whether the model was
pre-trained on an external dataset. “#samples” is the amount of fake videos used to compute the fake data statistics. In Fig. 8, we also
demonstrated that FVD scores computed for different amount of samples are well-correlated with one another. For IS, we cannot compute

it for 64-frames-long videos due to the design of C3D model [46, 53].

Method Resolution Pre-trained? #samples FVD] ISt
DIGAN [70] 16 x 128 x 128 X 2048 16302 00.00
StyleGAN-V [53] 16 x 256 x 256 X 2048 14310 23.94
TATS [13] 16 x 128 x 128 X N/A 332 7928
VIDM [38] 16 x 256 x 256 X 2048 2947 -
LVDM [21] 16 x 256 x 256 X 2048 372 ]
PVDM [71] 16 x 256 x 256 X 2048 3436 -
PVDM [71] 16 x 256 x 256 X 10,000 _ 7440
PVDM [71] 128 x 256 x 256 X 2048 6484 -
VideoFusion [37] 16 x 128 x 128 X N/A 173 80.03
Make-A-Video® [51] 16 x 256 x 256 / 10,000 8125 8255
16 x 256 x 256 X 2048 37050 61.50
16 x 256 x 256 P 10,000 34454 7373
HPDM-S 64 % 256 x 256 X 2048 64748 N/A
64 % 256 x 256 X 10,000 57880 N/A
16 x 256 x 256 X 2048 178.15 69.76
16 x 256 x 256 X 10,000 143.06 84.29
HPDM-M 64 % 256 x 256 X 2048 32472 N/A
64 % 256 x 256 X 10,000 257.65 N/A
16 x 256 x 256 X 2048 9200 7116
16 x 256 x 256 X 10,000 6632  87.68
HPDM-L 64 % 256 x 256 X 2048 13752 N/A
64 % 256 x 256 X 10,000 10142 N/A

Table 7. Additional zero-shot FVD evaluation results for UCF-
101. For zero-shot evaluation, to the best of our knowledge, all
the prior works use 10,000 generated videos to compute the I3D
statistics.

Method Resolution FVD] ISt
CogVideo [25] 16 x 480 x 480  701.6 25.27
Make-A-Video 16 x 256 x 256 367.2 33.00
MagicVideo [75] 16 x 256 x 256 655 -
LVDM [21] 16 x 256 x 256 641.8 -
Video LDM [4] N/A 550.6 33.45
VideoFactory [63] 16 x 256 x 256 410.0 -
PYoCo [14] 16 x 256 x 256 3552  47.46
16 x 144 x 256  383.26  21.15
16 x 256 x 256  728.26  23.46
HPDM-T2V 16 x 288 x 512 481.93  23.77
64 x 256 x 256 1238.62 N/A
64 x 288 x 512 1197.60 N/A

ing steps performed and also the latent dimensionality of

RINs [27]: 256, 512 and 1024, respectively. Our text-to-
video model HPDM-T2V was fine-tuned for 15k steps and
HPDM-T2V-1K for 100k steps. We provide the hyperpa-
rameters for our models in Tab. 8. For sampling, we use
spatial 50% patch overlapping to compute the metrics (for
performance purposes), and full overlapping for visualiza-
tions. We use stochastic sampling with second-order cor-
rection [29] for the first pyramid level. For later stages, we
use Also, we disabled stochasticity for text-to-video syn-
thesis since we have not observed it to be improving the
results. We use 128 steps for the first pyramid stage, and
then decrease them exponentially for later stages, dividing
the number of steps by 2 with each pyramid level increase.

D. Failed experiments

In this section, we provide a list of ideas which looked
promising inutitively, but didn’t work out at the end — ei-
ther because of some fundamental fallacies related to them,
or the lack of experimentation and limited amount of time to
explore them, or because of some potential implementation
bugs which we have not been aware of.
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Figure 9. Random samples from HPDM-L on UCF-101 64 x 2562 [56] without classifier-free guidance. We display 16 frames from a
64-frame-long video with 4 x subsampling.

1. Cached inference has not sped up inference as much as the model started to diverge when we tried replacing raw

we expected. As described in Sec. 4.5 and Appendix C,
we cache the activations from previous pyramid levels
when sampling its higher stages. However, the speed-up
was just ~40%, which was not decisive. One issue is that
we do not cache some activations (tokenizer activations
and contexts). But the other reason is that grid-sampling
is expensive. Grid sampling could be avoided by upsam-
pling and then slicing, but this would lead to additional
memory usage and will complicate the inference code.

2. Positional encoding of the coordinates. For some reason,

coordinates with their sinusodial embeddings. We be-
lieve that this direction is still promising, but is under-
explored.

. Stochastic sampling and second-order sampling for later

stages. For UCF-101, we use stochastic sampling for
the first pyramid level, but disabled it for text-to-video
generation. Also, second-order correction was produc-
ing grainy artifacts for later pyramid stages.

. Weight sharing between blocks. To conserve GPU mem-

ory, we tried to share the weights between all the trans-
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former blocks, but that led to inferior results.

. Cheap high-res + expensive low-res U-Net backbone. U-
Nets were also not converging well for us in their regu-
lar design and were not giving substantial performance
yields when combined with adaptive computation (only
~10% during training versus ~50% in RINs) due to the
irregular amounts of blocks per resolution in their de-
sign.

. Random pyramid cuts. Another strategy to make the
later pyramid stages cheaper during training was to com-
pute them only once in a while. For this, we would ran-
domly sample the amount of pyramid stages for each
mini batch per GPU. When parallelizing across many

Figure 10. Text-to-video generation results for variable text prompts. Note that our text-to-video model has been fine-tuned only for 15k
training steps from a 36 x 64 low-resolution generator. Animations and comparisons to the current SotA can be found in the supplementary.

GPUs, this strategy gives enough randomness. While
it decreased the training costs without severe quality
degradation, it does not speed up inference and compli-
cates logging.

7. Mixed precision training. It produced consistently worse

convergence, either with manual mixed precision or au-
tocast, either for FP16 and BF16.

8. Fusing patch features for all the layers. That strat-

egy was not giving much quality improvement, but was
tremendously expensive, which is why we gave it up.
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Figure 11. Full architecture illustration of HPDMwith depiction of the blocks.

Table 8. Hyperparameters for different variations of HPDM. For all the models, we used almost the same amount hyperparameters. For
HPDM-T2V, we used joint video + image training which is reflected by its batch size. For HPDM-T2Vand HPDM-T2V-1K, we also used
low-res pre-training by first training the lowest pyramid stage on 36 x 64-resolution videos for 500k steps.

Hyperparameter HPDM-S HPDM-M HPDM-L HPDM-T2V HPDM-T2V-1K
Conditioning information class labels class labels class labels T5-11B embeddings T5-11B embeddings
Conditioning dropout probability 0.1 0.1 0.1 0.1 0.1
Tokenization dim 1024 1024 1024 1024 1024
Tokenizer resolution 1x4x4 1x4x4 1x4x4 1x3x4 1x3x4
Latent dim 256 512 1024 3072 3072
Number of latents 768 768 768 768 768

Batch size 768 768 768 4096 + 4096 1024 + 1024
Target LR 0.005 0.005 0.005 0.005 0.005
Weight decay 0.01 0.01 0.01 0.01 0.01
Number of warm-up steps 10k 10k 10k 5k 5k
Parallelization strategy DDP DDP DDP FSDP FSDP
Starting resolution 16 x 64 x 64 16 x 64 x 64 16 x 64 x 64 8 x 36 x 64 16 x 72 x 128
Target resolution 64 x 256 x 256 64 x 256 x 256 64 x 256 x 256 64 x 288 x 512 16 x 576 x 1024
Patch resolution 16 x 64 x 64 16 x 64 x 64 16 x 64 x 64 8 x 36 x 64 16 x 72 x 128
Number of RIN blocks [27] 6 6 6 6 6
Number of pyramid levels 3 3 3 4 4
Number of pyramid levels per block 1/172/2/3/3 1/1/2/2/3/3 1/1/2/2/3/3 1/2/2/3/3/4 4/4/4/4/4/4
Number of parameters 178M 321M 725M 3,934M 3,934M
Number of training steps 40k 40k 65k 15k (+ 500k) 100k (+ 500k)

E. Potential negative impact

We introduced a patch-wise diffusion-based video genera-

step forward in the field. While our model exhibits promis-
ing capabilities, it’s essential to consider its potential nega-

tion model: a new paradigm for video generation that is a

tive societal impacts:



L]

Misinformation and Deepfakes. While our text-to-video
model underperforms compared to the largest existing
ones (.e.g, [22, 51]), it demonstrates a promising direction
on how to improve the existing generators further, which
creates a risk of generative Al misuse in creating mislead-
ing videos or deepfakes. This can contribute to the spread
of misinformation or be used for malicious purposes.
Intellectual Property Concerns. The ability to generate
videos can lead to challenges in copyright and intellec-
tual property rights, especially if the technology is used
to replicate or modify existing copyrighted content with-
out permission.

Economic Impact. Automation of video content gener-
ation could impact jobs in industries reliant on manual
content creation, leading to economic shifts and potential
job displacement.

Bias and Representation. Like any Al model, ours is sub-
ject to the biases present in its training data. This can lead
to issues in representation and fairness, especially if the
model is used in contexts where diversity and accurate
representation are crucial.

To address the potential negative impacts, it is crucial to:
Develop and enforce strict ethical guidelines for the use
of video generation technology.

Continuously work on improving the model to reduce bi-
ases and ensure fair representation.

Collaborate with legal and ethical experts to understand
and navigate the implications of video synthesis technol-
ogy in terms of intellectual property rights. Engage with
stakeholders from various sectors to assess and mitigate
any economic impacts, particularly concerning job dis-
placement.

In conclusion, while our model represents a notable ad-
vancement in video generation technology, it is imperative
to approach its deployment and application with a balanced
perspective, considering both its benefits and potential soci-
etal implications.
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