Installation#
There are various ways to use GiGL, depending on your preferred environment. These are the current environments supported by GiGL
Mac (Arm64) |
Linux CPU |
CUDA 11.8 |
CUDA 12.1 |
|
---|---|---|---|---|
Python |
||||
3.9 |
Supported |
Supported |
Supported |
Not Yet Supported |
3.10 |
Not Yet Supported |
Not Yet Supported |
Not Yet Supported |
Not Yet Supported |
The easiest way to set up gigl is to install it using pip. However, before installing the package, make sure you have the following prerequisites:
PyTorch Version: 2.1.2 (see PyTorch Installation Docs)
Torchvision Version: 0.16.2
Torchaudio Version: 2.1.2
To simplify this process, the steps to create a new conda enviornment and install gigl (and its dependencies) are shown below (seperated by platform/OS).
Installation Steps#
Create the conda environment (python 3.9)
conda create -y -c conda-force --name ANY_NAME python=3.9 pip-tools
Activate the newly created environment:
conda activate ANY_NAME
Install prerequisites
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 -c pytorch -y
Install GiGL
pip install gigl[torch21-cpu, transform]
Create the conda environment (python 3.9)
conda create -y -c conda-force --name ANY_NAME python=3.9 pip-tools
Activate the newly created environment:
conda activate ANY_NAME
Install prerequisites
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 cpuonly -c pytorch -y
Install GiGL
pip install gigl[torch21-cpu, transform]
Create the conda environment (python 3.9)
conda create -y -c conda-forge --name ANY_NAME python=3.9 pip-tools
Activate the newly created environment:
conda activate ANY_NAME
Install prerequisites
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=11.8 -c pytorch -c nvidia
Install GiGL
pip install gigl[torch21-cuda-118, transform]